Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
PLoS Pathog ; 20(4): e1012159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662650

RESUMO

Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Infecções por Enterovirus , Vacina Antipólio de Vírus Inativado , Animais , Camundongos , Reações Cruzadas/imunologia , Anticorpos Antivirais/imunologia , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/prevenção & controle , Infecções por Enterovirus/virologia , Vacina Antipólio de Vírus Inativado/imunologia , Vacina Antipólio de Vírus Inativado/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Anticorpos Neutralizantes/imunologia , Papio/imunologia , Humanos , Poliovirus/imunologia , Feminino , Formação de Anticorpos/imunologia , Enterovirus/imunologia , Camundongos Endogâmicos BALB C , Enterovirus Humano D/imunologia
2.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
3.
Infect Immun ; 91(12): e0024523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37916806

RESUMO

Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.


Assuntos
Neisseria gonorrhoeae , Vacinas de Partículas Semelhantes a Vírus , Animais , Feminino , Humanos , Camundongos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Capsídeo , Imunoglobulina A , Imunoglobulina G , Camundongos Endogâmicos BALB C , Muramidase , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
4.
Viruses ; 15(2)2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36851527

RESUMO

Virus-like particles (VLPs), composed of the small hepatitis B virus surface antigen (HBsAgS), are the antigenic components of the hepatitis B virus (HBV) vaccine and represent the backbones for a chimeric anti-malaria vaccine and various vaccine candidates. Biological vectors have to face pre-existing anti-vector immune responses due to previous immune exposure. Vector recognition after natural infections or vaccinations can result in unwarranted outcomes, with compromising effects on clinical outcomes. In order to evaluate the impact of a pre-existing anti-HBsAgS immune response, we developed mutant VLPs composed of subunits with reduced HBsAgS-specific antigenicity. The insertion of a Plasmodium falciparum circumsporozoite protein (CSP)-derived epitope as a read-out allowed the assessment of wild type (wt) and mutant VLPs in the context of a pre-existing immune response. Mutant and wt VLP platforms with a CSP-epitope insert are immunogenic and have the ability to generate anti-CSP antibody responses in both naïve BALB/c mice and mice with a pre-existing anti-HBsAgS immune response, but with superior anti-CSP responses in mice with a pre-existing immunity. The data indicate that previous HBsAgS exposure facilitates enhanced antibody responses against foreign epitopes delivered by the HBsAgS platform, and, in this context, the state of immune sensitization alters the outcome of subsequent vaccinations.


Assuntos
Antígenos de Superfície da Hepatite B , Imunogenicidade da Vacina , Vacinas Antimaláricas , Plasmodium falciparum , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Epitopos/genética , Epitopos/imunologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/imunologia , Imunogenicidade da Vacina/genética , Imunogenicidade da Vacina/imunologia , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Camundongos Endogâmicos BALB C , Modelos Animais , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Vacinação , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
J Virol ; 97(1): e0190022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602367

RESUMO

Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas de Partículas Semelhantes a Vírus , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Virais/imunologia
6.
Protein Expr Purif ; 203: 106214, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526214

RESUMO

Hepatitis E is an emerging zoonotic disease, posing a severe threat to public health in the world. Since there are no specific treatments available for HEV infection, it is crucial to develop vaccine to prevent this infection. In this study, the truncated ORF2 encoded protein of 439aa∼617aa (HEV3-179) from HEV CCJD-517 isolates was expressed as VLPs in E. coli with diameters of approximate 20 nm. HEV3-179 protein was immunized with mice, and the results showed that a higher titre of antibody was induced in NIH mice in comparison with that of KM mice (P < 0.01) and BALB/c mice (P < 0.01). The induced antibody titer is much higher in subcutaneous immunization mice than that in the mice inoculated via abdominal immunization (P < 0.05) and muscles immunization (P < 0.01). Mice immunized with 12 µg and 6 µg candidate vaccine induced higher level of antibody titer than that of 3 µg dosage group (P < 0.01, P < 0.05). Antibody change curve showed that HEV IgG antibody titer increased from 14 days post immunization (dpi) to 1:262144 and reached the peak level on 42 dpi before gradually retreated with the same level antibody titer with 1:131072 until 84 dpi. Mice inoculated with HEV3-179 produced higher titer of cytokines than the mock group, and the concentration of IL-1ß (P < 0.01) and IFN-γ (P < 0.01) further increased after stimulated by candidate vaccine. The result indicated that HEV3-179 possesses good immunogenicity, which could be used as a potential candidate for future HEV vaccine development.


Assuntos
Vírus da Hepatite E , Hepatite E , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli , Hepatite E/prevenção & controle , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Imunização , Proteínas Recombinantes/genética , Partículas Artificiais Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia
7.
J Virol ; 96(13): e0056622, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35703545

RESUMO

The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of ßHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no ßHPV. To comprehensively target both α- and ßHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus ßHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against ß-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all ßHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and ßHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target ßHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse ßHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Papillomaviridae , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Alphapapillomavirus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Carcinoma de Células Escamosas/prevenção & controle , Epitopos/imunologia , Feminino , Papillomavirus Humano 16/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Coelhos , Vacinas de Partículas Semelhantes a Vírus/imunologia
8.
Allergy ; 77(8): 2446-2458, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403221

RESUMO

BACKGROUND: The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS: In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS: CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike-IgG and IgA antibodies of high avidity. Local immune response was assessed, and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs). CONCLUSION: Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus/imunologia
9.
PLoS One ; 17(3): e0263671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275926

RESUMO

Novel therapeutic strategies are needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. Here, we present a protocol to anchor the SARS-CoV-2 spike (S-)protein in the cytoplasmic membranes of erythrocyte liposomes. A surfactant was used to stabilize the S-protein's structure in the aqueous environment before insertion and to facilitate reconstitution of the S-proteins in the erythrocyte membranes. The insertion process was studied using coarse grained Molecular Dynamics (MD) simulations. Liposome formation and S-protein anchoring was studied by dynamic light scattering (DLS), ELV-protein co-sedimentation assays, fluorescent microcopy and cryo-TEM. The Erythro-VLPs (erythrocyte based virus like particles) have a well defined size of ∼200 nm and an average protein density on the outer membrane of up to ∼300 proteins/µm2. The correct insertion and functional conformation of the S-proteins was verified by dose-dependent binding to ACE-2 (angiotensin converting enzyme 2) in biolayer interferometry (BLI) assays. Seroconversion was observed in a pilot mouse trial after 14 days when administered intravenously, based on enzyme-linked immunosorbent assays (ELISA). This red blood cell based platform can open novel possibilities for therapeutics for the coronavirus disease (COVID-19) including variants, and other viruses in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Membrana Eritrocítica , Simulação de Dinâmica Molecular , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Membrana Eritrocítica/química , Membrana Eritrocítica/imunologia , Feminino , Lipossomos , Camundongos , Projetos Piloto , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/farmacologia , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/farmacologia
10.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233549

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Lipossomos , Macaca fascicularis , Masculino , Pandemias/prevenção & controle , Células Th1/imunologia , Resultado do Tratamento , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero
11.
Virology ; 568: 41-48, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101772

RESUMO

The sequence diversity of HIV-1 is the biggest hurdle for the design of a prophylactic vaccine. Mosaic (Mos) antigens consisting of synthetically shuffled epitopes from various HIV-1 strains are currently tested in the clinical vaccine trial Mosaico (NCT03964415). Besides adenovirus vectors encoding variants of Mos.Gag-Pol and soluble Mos.Env proteins, the Mosaico vaccine entails vectors mediating gene transfer and expression of the membrane-anchored Env-variant Mos2S.Env. We thus examined whether the expression of mosaic Gag mediates the formation of virus-like particles (VLPs). Mos1.Gag- and Mos2.Gag-VLP-formation was readily detected using Western blot- and electron microscopic-analysis. Upon co-expression of both mosaic Gag variants with Mos2S.Env, incorporation of Env into Gag-formed VLPs was observed. The display of the respective neutralization-sensitive target epitopes on Mos2S.Env-decorated VLPs was demonstrated employing a panel of broadly neutralizing antibodies (bNAbs) in a VLP-capture assay. This opens new perspectives for future HIV vaccine designs.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Especificidade de Anticorpos/imunologia , Epitopos/genética , Epitopos/imunologia , Ordem dos Genes , Vetores Genéticos/genética , Infecções por HIV/prevenção & controle , Interações Hospedeiro-Patógeno , Humanos , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216022

RESUMO

Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Análise de Sobrevida , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética
13.
Sci Rep ; 12(1): 1005, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046461

RESUMO

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a public health emergency, and research on the development of various types of vaccines is rapidly progressing at an unprecedented development speed internationally. Some vaccines have already been approved for emergency use and are being supplied to people around the world, but there are still many ongoing efforts to create new vaccines. Virus-like particles (VLPs) enable the construction of promising platforms in the field of vaccine development. Here, we demonstrate that non-infectious SARS-CoV-2 VLPs can be successfully assembled by co-expressing three important viral proteins membrane (M), envelop (E) and nucleocapsid (N) in plants. Plant-derived VLPs were purified by sedimentation through a sucrose cushion. The shape and size of plant-derived VLPs are similar to native SARS-CoV-2 VLPs without spike. Although the assembled VLPs do not have S protein spikes, they could be developed as formulations that can improve the immunogenicity of vaccines including S antigens, and further could be used as platforms that can carry S antigens of concern for various mutations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas Viroporinas/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , /metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
14.
Vet Microbiol ; 264: 109306, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923247

RESUMO

Currently, highly pathogenic avian influenza (HPAI) H7N9 viruses still pose a potential pandemic threat. Influenza virus-like particle (VLP) is one of the most promising vaccine strategies to complement traditional egg-dependent vaccines. Here, we generated a H7N9 VLP vaccine candidate by baculovirus expression system and evaluated its efficacy in chickens and mice. The H7N9 VLP was produced through co-infection of Sf9 insect cells with three recombinant baculoviruses expressing individual HA, NA and M1 gene of the HPAI H7N9 virus A/chicken/Guangdong/GD15/2016. Intramuscular immunization of the H7N9 VLP elicited robust antibody immune responses and conferred complete clinical protection against lethal H7N9 virus challenge both in chickens and mice. Meanwhile, H7N9 VLP significantly restrained virus shedding and dramatically alleviated pulmonary lesions caused by H7N9 virus infection in birds and mice. Interestingly, chicken antibodies induced by the H7N9 VLP also had a good cross-reactivity with H7N9 field strains isolated in different years. In addition, vaccination with the H7N9 VLP elicited high T cell immunity in mouse lung, evidenced by significantly upregulated expression of IL-2, IL-4 and IFN-γ. Furthermore, the H7N9 VLP significantly decreased the expression of some key inflammatory cytokines, such as IL6, RANTES and TNF-α in mouse lung, which may partially account for its contribution to alleviate lung pathology. Therefore, our study describes the good efficacy of the HA + NA + M1-containing H7N9 VLP both in chicken and mice models, highlighting the potential of VLP-based vaccine as a critical alternative of traditional egg-based vaccine for control of H7N9 influenza virus in both humans and poultry.


Assuntos
Baculoviridae , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais/sangue , Baculoviridae/imunologia , Galinhas , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia
15.
J Virol ; 96(1): e0134321, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668778

RESUMO

Longitudinal studies in HIV-1-infected individuals have indicated that 2 to 3 years of infection are required to develop broadly neutralizing antibodies. However, we have previously identified individuals with broadly neutralizing activity (bNA) in early HIV-1 infection, indicating that a vaccine may be capable of bNA induction after short periods of antigen exposure. Here, we describe 5 HIV-1 envelope sequences from individuals who have developed bNA within the first 100 days of infection (early neutralizers) and selected two of them to design immunogens based on HIV-1-Gag virus-like particles (VLPs). These VLPs were homogeneous and incorporated the corresponding envelopes (7 to 9 µg of gp120 in 1010 VLPs). Both envelopes (Envs) bound to well-characterized broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies (PGT145, VRC01, and 35022). For immunogenicity testing, we immunized rabbits with the Env-VLPs or with the corresponding stabilized soluble envelope trimers. A short immunization protocol (105 days) was used to recapitulate the early nAb induction observed after HIV-1 infection in these two individuals. All VLP and trimeric envelope immunogens induced a comparably strong anti-gp120 response despite having immunized rabbits with 30 times less gp120 in the case of the Env-VLPs. In addition, animals immunized with VLP-formulated Envs induced antibodies that cross-recognized the corresponding soluble stabilized trimer and vice versa, even though no neutralizing activity was observed. Nevertheless, our data may provide a new platform of immunogens, based on HIV-1 envelopes from patients with early broadly neutralizing responses, with the potential to generate protective immune responses using vaccination protocols similar to those used in classical preventive vaccines. IMPORTANCE It is generally accepted that an effective HIV-1 vaccine should be able to induce broad-spectrum neutralizing antibodies. Since most of these antibodies require long periods of somatic maturation in vivo, several groups are developing immunogens, based on the HIV envelope protein, that require complex and lengthy immunization protocols that would be difficult to implement in the general population. Here, we show that rabbits immunized with new envelopes (VLP formulated) from two individuals who demonstrated broadly neutralizing activity very early after infection induced specific HIV-1 antibodies after a short immunization protocol. This evidence provides the basis for generating protective immune responses with classic vaccination protocols with vaccine prototypes based on HIV envelope sequences from individuals who have developed early broadly neutralizing responses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Adulto , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Contagem de Linfócito CD4 , Relação CD4-CD8 , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/química , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
16.
Antiviral Res ; 197: 105231, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965447

RESUMO

Human noroviruses (NoVs) are the most common cause of acute gastroenteritis worldwide. One major obstacle in developing NoV vaccines is the lack of robust cell culture for efficacy evaluation. In this study, we successfully developed a NoV virus-like particle (VLP) entry assay based on split NanoLuc luciferase (LgBiT and HiBiT) complementation. HiBiT-tagged NoV GII.4 VLP (VLP-HiBiT) can be efficiently produced in Pichia pastoris and retain binding activity towards NoV receptor histo-blood group antigens (HBGAs). A 293T-FUT2-LgBiT cell line was established and was shown to stably express cell surface HBGAs and intracellular LgBiT. GII.4 VLP-HiBiT can bind and enter into the 293-FUT2-LgBiT cells, producing strong luminescence signals in live cells. Anti-GII.4 sera can inhibit VLP-HiBiT entry into the 293-FUT2-LgBiT cells in a dose-dependent manner, and neutralizing titers well correlate with their blocking titers measured by HBGAs-binding blockade assay. Moreover, such a surrogate infection/neutralization assay can be applied to other NoV genotypes such as GI.1 and GII.17. Together, the VLP-HiBiT entry assay can mimic both NoV attachment and internalization in live cells and thus facilitate reliable and comprehensive evaluation of NoV vaccine and antibodies.


Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/farmacologia , Luciferases/genética , Norovirus/genética , Norovirus/imunologia , Internalização do Vírus , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/virologia , Teste de Complementação Genética/métodos , Teste de Complementação Genética/normas , Genótipo , Células HEK293 , Humanos , Luciferases/metabolismo , Medições Luminescentes , Saccharomycetales/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Ligação Viral
17.
Front Immunol ; 12: 781718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868056

RESUMO

Norovirus (NoV) is a zoonotic virus that causes diarrhea in humans and animals. Outbreaks in nosocomial settings occur annually worldwide, endangering public health and causing serious social and economic burdens. The latter quarter of 2016 witnessed the emergence of the GII.P16-GII.2 recombinant norovirus throughout Asia. This genotype exhibits strong infectivity and replication characteristics, proposing its potential to initiate a pandemic. There is no vaccine against GII.P16-GII.2 recombinant norovirus, so it is necessary to design a preventive vaccine. In this study, GII.P16-GII.2 type norovirus virus-like particles (VLPs) were constructed using the baculovirus expression system and used to conduct immunizations in mice. After immunization of mice, mice were induced to produce memory T cells and specific antibodies, indicating that the VLPs induced specific cellular and humoral immune responses. Further experiments were then initiated to understand the underlying mechanisms involved in antigen presentation. Towards this, we established co-cultures between dendritic cells (DCs) or macrophages (Mø) and naïve CD4+T cells and simulated the antigen presentation process by incubation with VLPs. Thereafter, we detected changes in cell surface molecules, cytokines and related proteins. The results indicated that VLPs effectively promoted the phenotypic maturation of Mø but not DCs, as indicated by significant changes in the expression of MHC-II, costimulatory factors and related cytokines in Mø. Moreover, we found VLPs caused Mø to polarize to the M1 type and release inflammatory cytokines, thereby inducing naïve CD4+ T cells to perform Th1 immune responses. Therefore, this study reveals the mechanism of antigen presentation involving GII.P16-GII.2 recombinant norovirus VLPs, providing a theoretical basis for both understanding responses to norovirus infection as well as opportunities for vaccine development.


Assuntos
Infecções por Caliciviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Norovirus/imunologia , Células Th1/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Apresentação de Antígeno , Antígenos Virais/genética , Antígenos Virais/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Macrófagos/metabolismo , Camundongos , Norovirus/classificação , Norovirus/genética , Proteínas Recombinantes , Células Th1/metabolismo , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura
18.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686605

RESUMO

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Assuntos
Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , RNA Viral/administração & dosagem , Replicon , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Feminino , Deleção de Genes , Genes env , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , RNA Viral/genética , RNA Viral/imunologia , Vacinas de DNA , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência/genética , Virulência/imunologia
19.
Immunol Lett ; 239: 77-87, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508790

RESUMO

Cancer immunotherapy is emerging as a viable treatment option for several types of cancer. Active immunotherapy aims for the induction of specific antitumor immune responses; this goal requires strategies capable of increasing the immunogenicity of tumour antigens. Parvovirus B19 virus-like particles (B19-VLPs) formed of VP2 protein had been shown to be an effective multi-neoepitope delivery system capable of inducing specific cellular responses towards coupled antigens and reducing tumour growth and lung metastases in triple negative breast cancer mouse model. These findings encouraged us to further characterise these VP2 B19-VLPs by testing their capacity to simultaneously induce cellular and humoral responses towards other tumour-associated antigens, as this had not yet been evaluated. Here, we designed and evaluated in the 4T1 breast cancer model the prophylactic and therapeutic effect of VP2 B19-VLPs decorated with cellular (P53) and humoral (MUC1) epitopes. Balb/c mice were immunised with chimaeric VLPs, vehicle, or VLPs plus adjuvant. Tumour establishment and growth, lung metastasis, and cellular and humoral immune responses were evaluated. The prophylactic administration of chimaeric VLPs without adjuvant prevented the establishment of the tumour, while by therapeutic administration, chimaeric VLPs induced smaller tumour growth and decreased the number of metastases in the lung compared to wild-type VLPs. chimaeric VLPs induced high antibody titres towards the MUC1 epitope, as well as specific cellular responses towards P53 epitopes in lymph nodes local to the tumour. Our results reinforce and extend the utility of VP2 B19-VLPs as an encouraging tumour antigen delivery system in cancer immunotherapy able to improve tumour immunity in TNBC by inducing cellular and humoral immune responses.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Parvovirus B19 Humano/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Neoplasias/administração & dosagem , Toxinas de Bacillus thuringiensis/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endotoxinas/administração & dosagem , Feminino , Proteínas Hemolisinas/administração & dosagem , Humanos , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , Proteínas de Insetos , Camundongos , Receptores de Superfície Celular , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
20.
Sci Rep ; 11(1): 17542, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475493

RESUMO

The global incidence of dengue, which is caused by dengue virus (DENV) infection, has grown dramatically in recent decades and secondary infection with heterologous serotype of the virus may cause severe symptoms. Efficacious dengue vaccines should be able to provide long-lasting immunity against all four DENV serotypes simultaneously. In this study, we constructed a novel vaccine platform based on tetravalent dengue virus-like particles (DENV-LPs) in which envelope (E) protein carried a FLAG tag sequence at the position located not only in the exterior loop on the protruding domain but outside of dimerization interface of the protein. We demonstrated an effective strategy to produce the DENV-LPs by transient transfection with expression plasmids for pre-membrane and E proteins of DENV-1 to DENV-4 in mammalian cells and to concentrate and purify them with one-step affinity chromatography. Characteristic features of VLPs such as particle size, shape and density were comparable to flavivirus-like particles reported. The neutralizing activity against all four DENV serotypes was successfully induced by immunization with the purified tetravalent VLPs in mice. Simple, one-step purification systems for VLP vaccine platforms using epitope-tagging strategy should be advantageous for vaccine development not only for dengue but for emerging pandemics in the future.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Oligopeptídeos/química , Vacinas Combinadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Linhagem Celular , Dengue/patologia , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...